# Remarkable enhancement of SO<sub>2</sub> resistance for NO reduction with NH<sub>3</sub> over a novel TiO<sub>2</sub>/CeO<sub>2</sub> catalyst

L. Zhang<sup>1,2</sup>, C.J. Tang<sup>1,2</sup>, Y. Deng<sup>2</sup>, F. Gao<sup>1,2</sup>, <u>L. Dong<sup>1,2\*</sup></u> <sup>1</sup> Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China <sup>2</sup>Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China \*corresponding author:donglin@nju.edu.cn

## Introduction

The selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub> (NH<sub>3</sub>-SCR) technique has been used for effective removal of NO<sub>x</sub> from stationary sources, CeO<sub>2</sub>-TiO<sub>2</sub> based catalyst is environmentally-benign and one of potential alternatives for V<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>/TiO<sub>2</sub> catalyst. However, it is reported that CeO<sub>2</sub>/TiO<sub>2</sub> catalyst prepared by impregnation method has poor SO<sub>2</sub> resistance performance, which limits its practical application. Herein, we found TiO<sub>2</sub>/CeO<sub>2</sub> displayed much better SO<sub>2</sub> resistance performance than CeO<sub>2</sub>/TiO<sub>2</sub>. *In situ* DRIFT technique was employed to approach the interaction of SO<sub>2</sub> with catalysts and disclose the possible mechanism.

## **Materials and Methods**

 $TiO_2/CeO_2$  and  $CeO_2/TiO_2$  samples were prepared by incipient wetness impregnation. Catalytic reaction was performed in a fixed-bed quartz reactor tube. The effluent gases were continuously analyzed by an online Nicolet IS10 infrared spectrometer equipped. The *in situ* DRIFT experiments were performed on a Nicolet Nexus 5700 FTIR spectrometer by using a diffuse reflectance attachment (HARRICK) equipped with a reaction cell (ZnSe windows).

#### **Results and Discussion**

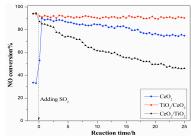



Figure 1. NH<sub>3</sub>-SCR activities of samples with 200 ppm SO<sub>2</sub> at 300 °C.

Figure 1 showed the results of catalytic activity with SO<sub>2</sub> over samples. CeO<sub>2</sub> had only about 33% NO removal rate at 300 °C before adding SO<sub>2</sub>. After injecting SO<sub>2</sub> for 30 min, the NO conversion of CeO<sub>2</sub> was up to *ca.*90%, which displayed the similar effect with the pre-sulfation of pure CeO<sub>2</sub> [1]. With the increase of test time, NO conversion gradually dropped to *ca.*74% at 25 h. For CeO<sub>2</sub>/TiO<sub>2</sub>, the NO conversion was continuously declining from *ca.*94% to *ca.*46% during the whole testing time, indicating the serious poisoning effect of SO<sub>2</sub> on CeO<sub>2</sub>/TiO<sub>2</sub>. In contrast, the NO conversion of TiO<sub>2</sub>/CeO<sub>2</sub> just slightly decreased within 30 min after the injection of SO<sub>2</sub> and the NO

conversion was keeping at *ca*.90%. Thus, TiO<sub>2</sub>/CeO<sub>2</sub> had the evident SO<sub>2</sub> resistance.

The co-adsorption DRIFT of  $SO_2 + O_2$  at 300 °C was conducted to investigate the interaction between sulfates and samples. As shown in **Figure 2**, both the bands at 997-1105 cm<sup>-1</sup> due to the symmetric stretching frequencies of O-S-O species and the bands at 1310-1363 cm<sup>-1</sup> due to the asymmetric stretching frequencies of O=S=O species were assigned to surface adsorbed sulfates, and a broad band at 1180 cm<sup>-1</sup> was ascribed to sulfates located in bulk or subsurface of CeO<sub>2</sub> [2]. All the three samples had surface adsorbed sulfates. Both CeO<sub>2</sub> and CeO<sub>2</sub>/TiO<sub>2</sub> exhibited bulk sulfates at 1180 cm<sup>-1</sup>. However, negligible bulk sulfates were detected in TiO<sub>2</sub>/CeO<sub>2</sub> as evidenced by the absence of the band at 1180 cm<sup>-1</sup>.

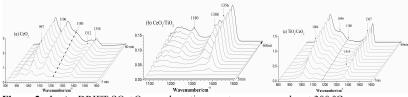



Figure 2. In situ DRIFT SO<sub>2</sub>+O<sub>2</sub> co-adsorption spectra over samples at 300 °C.

In situ DRIFT results indicated that the configurations of catalysts had a distinct effect on the formation of sulfates. It is well documented that NH<sub>3</sub>-SCR performances of catalysts are dependent on synergistic catalysis between acid sites and redox sites. Two reaction routes proceed over the sulfated samples. Route I is based on the active site of surface sulfates-bulk CeO<sub>2</sub> for sulfated CeO<sub>2</sub> catalyst [1]. Route II is represented by the active site of Ce-O-Ti for CeO<sub>2</sub>/TiO<sub>2</sub> and TiO<sub>2</sub>/CeO<sub>2</sub> catalysts [3]. Based on the results of DRIFT, when bulk sulfates is formed in CeO<sub>2</sub>, the synergistic catalysis between surface sulfates and bulk CeO<sub>2</sub> is the formation of surface metal sulfates which covers the active sites of Ce-O-Ti. Interestingly, the NH<sub>3</sub>-SCR reaction can also proceed by route I over TiO<sub>2</sub>/CeO<sub>2</sub> due to the support of bulk CeO<sub>2</sub>. Although the active sites of Ce-O-Ti are covered, the synergistic catalysis between surface sulfates and bulk CeO<sub>2</sub> still pushes forward the NH<sub>3</sub>-SCR process.

## Significance

 $TiO_2/CeO_2$  has better  $SO_2$  resistance than  $CeO_2/TiO_2$  because the configurations of catalysts can influence on the interaction between sulfates and catalysts. We have provided some theoretical guidances to prepare high performance  $CeO_2$ -TiO<sub>2</sub> based catalyst with good  $SO_2$  resistance for NH<sub>3</sub>-SCR by the investigation of TiO<sub>2</sub>/CeO<sub>2</sub> catalyst.

#### References

- Yang S.J.; Guo F.G.; Weng X.; Chang H.Z; Li J.H. Applied Catalysis B: Environmental 2013, 136-137, 19.
- Waqif M.; Bazin P.; Saur O.; Lavalley J.C.; Blanchard G.; Touret.O. Applied Catalysis B: Environmental 1997, 11, 193.
- Li P.; Xin Y.; Li Q.; Wang Z.P.; Zhang Z.L.; Zheng L.R. Environmental Science & Technology 2012, 46, 9605.