Catalytic oxidation of formaldehyde on nano-Co₃O₄, 2D-Co₃O₄, and 3D-Co₃O₄ catalysts

Bingyang Bai, Junhua Li*
Tsinghua University, Beijing, 100084 China
*corresponding author:lijunhua@tsinghua.edu.cn

Introduction

Formaldehyde (HCHO) emitted from the widely used building and decorative materials is becoming a major indoor pollutant in airtight buildings, and it could cause serious and hazardous effects on human health. Thus it is essential for human health to remove indoor formaldehyde [1]. Currently, the catalytic materials used in HCHO catalytic oxidation are mainly oxide-supported precious metals [2]. Noble metal catalysts are superior, but the high cost is prohibitive. Metal oxide catalysts are cheap, exhibit sufficient activity and are more practical. Co_3O_4 is widely used in catalytic field [3], however, the Co_3O_4 with the different structures and the same components for HCHO oxidation is seldom reported. In this work, nano- Co_3O_4 , 2D- Co_3O_4 , and 3D- Co_3O_4 are prepared, and their HCHO catalytic activities are evaluated.

Materials and Methods

SBA-15 (p6mm) and KIT-6 (ia3d) mesoporous silica were synthesized under acidic conditions using tetraethoxysilane as the silica source and Pluronic P123 as the structure-directing agent [4]. Nano-Co₃O₄ was prepared by the precipitation method [5]. In a typical synthesis of 2D-Co₃O₄ or 3D-Co₃O₄, 3.0 g of SBA-15 or KIT-6 molecular sieve was added to a Co(NO₃)₂·6H₂O ethanol solution (0.84 mol/L, 30 ml). The samples were evaporated to dryness at 80 °C. The products were calcined at 200 °C for 6 h. The above steps about casting and evaporating were repeated. Finally, the materials were calcined at 450 °C for 6 h. The SBA-15 and KIT-6 hard templates were removed using a 2 mol/L NaOH solution. Centrifugal separation was used to eliminate sodium silicate, and the samples were dried at 100 °C. The obtained powder was 2D-Co₃O₄ or 3D-Co₃O₄.

Results and Discussion

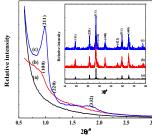
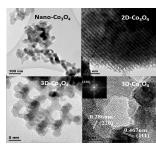
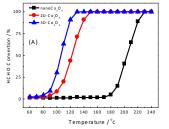
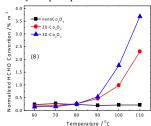


Figure 1. XRD patterns.




Figure 2. TEM images


Figure 1 displays that the wide-angle and low-angle XRD patterns of the Co_3O_4 catalysts. The $3D-Co_3O_4$ catalyst showed diffraction peaks at 1° , 1.14° and 1.85° (20), which correspond to

the (211), (220), and (332) planes. It indicates that $3D\text{-}Co_3O_4$ is a mesoporous material with a three-dimensional porous structure (ia3d) of the KIT-6. The $2D\text{-}Co_3O_4$ had peaks at 1° (2 θ) corresponding to the (100) crystal plane and demonstrating that $2D\text{-}Co_3O_4$ has the structural characteristics (p6mm) of SBA-15 mesoporous material [4]. The nano- Co_3O_4 showed no diffraction peak because it is a non-perforated material. From the wide-angle XRD image, all catalysts possess the crystalline cobalt oxide of spinel type structure.

Figure 2 shows that the 3D-Co₃O₄ has the (111) crystal plane and the (220) crystal plane with lattice spacing of 0.286 nm. The top left corner shows FFT of with [220] direction.

Figure 3 shows that the HCHO catalytic oxidation activities of the different Co_3O_4 catalysts. For conversion (**Figure 3A**), with an increase in temperature, the nano- Co_3O_4 catalyst displays the worst catalytic activity, completely converting HCHO at 230 °C, the 2D- Co_3O_4 catalyst has better oxidation activity, entirely converting HCHO at 150 °C, and the 3D- Co_3O_4 sample shows the best catalytic oxidation, entirely converting HCHO at 130 °C. The results indicate that the mesoporous materials have an advantage because of their structure. The three dimensional porous channels and the large surface area of the 3D- Co_3O_4 is highly conducive to formaldehyde oxidation. **Figure 3B** shows HCHO catalytic activity of normalized by BET surface areas. It is observed that normalized activity of the 3D- Co_3O_4 is much better than the other catalysts after deducting surface areas. The BET surface areas of the mesoporous catalysts prepared by the hard template method are much larger, especially for 3D- Co_3O_4 (85.9 m^2/g), than for the nano- Co_3O_4 (28.1 m^2/g) synthesized by the precipitation method.

Figure 3 HCHO catalytic conversion (A) and conversion normalized by BET surface area (B) of the different Co₃O₄ catalysts under the following conditions: HCHO concentration = 400 ppm, 20 vol % O₂, N₂ as balance gas, GSHV = 30000 mL/(g.h).

Significance

The 3D-Co₃O₄ had the best performance of HCHO catalytic oxidation due to the threedimensional porous channel structure, larger specific surface area and active Co³⁺ cationic species on the exposed (220) crystal face. It might be a non-noble catalyst for catalytic removal of formaldehyde in practical application.

References

- [1] H. Huang, D.Y.C. Leung, J. Catal. 2011, 280, 60-67.
- [2] B. Liu, Y. Liu, C. Li, W. Hu, et al. Appl. Catal. B: Environ. 2012, 127, 47-58.
- [3] X. Xie, Y. Li, Z. Liu, M. Haruta, W.J. Shen, Nature 2009, 458, 746-749.
- [4] A. Rumplecker, F. Kleitz, E. L. Salabas, F. Schuth, Chem. Mater. 2007, 19, 485-496.
- [5] J. Li, C. Ma, X. Xu, J. Yu, Z. Hao, S. Oiao, Environ. Sci. Technol. 2008, 42, 8947-8951.