Insights on the active phase and mechanism for NO oxidation on MnO_x-CeO₂ mixed oxide Ayman M. Karim^{1*}, Donghai Mei¹, Janos Szanyi¹, JaHun Kwak², Gongshin Qi^{3*}, Wei Li³, Diana Tran¹. Larry Pederson¹ ¹Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland WA, USA ² Department of Chemical Engineering, UNIST,100 Banyeon-Ri, Ulsan 689-798, Korea ³ General Motors Global Research & Development, Warren, MI, USA *corresponding authors:ayman.karim@pnnl.gov, gongshin.qi@gm.com ### Introduction The oxidation of engine-generated NO to NO_2 is an important step in the reduction of NO_x in lean engine exhaust because NO_2 enhances the activities of both ammonia selective catalytic reduction (SCR) 1 and Lean- NO_x Trap (LNT) 2 . Platinum is highly active for NO oxidation, and is widely used in diesel oxidation (DOC) and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. Recently, MnO_x - CeO_2 mixed oxide has been found to exhibit high activity for NO oxidation and is a promising catalyst to lower the loading or completely eliminate the need for $Pt.^2$ In this work, we investigate the Ce-Mn mixed oxide system using a suite of theoretical and experimental tools to provide insights on the active structure and reaction mechanism. #### **Materials and Methods** The MnO_x -CeO₂ catalysts were prepared by incipient wetness. The catalysts were characterized by temperature programmed reduction (TPR), BET surface area, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and extended X-ray absorption fine structure spectroscopy (EXAFS). The NO oxidation activity experiments were run in a fixed bed reactor at space velocity of 300,000 hr⁻¹, using 200 ppm NO, 10% O₂, 10% H₂O (balance N₂). The products were quantified using an infrared (IR) spectrometer. The NO interaction and NO oxidation mechanism were investigated with infrared spectroscopy in transmission mode. To provide fundamental insights on the reactivity of the MnO_x -CeO₂ catalysts, we performed DFT calculations to compare the NO oxidation on Mn doped CeO₂ with clusters of MnO₃ supported on the ceria surface. #### Results and Discussion A comparison of the TPR and XPS of the oxidized catalysts is shown in Figure 1. The TPR of the MnO_x -CeO $_2$ catalysts with different loading in Figure 1 show that the lower loading of MnO_x results in lower reduction temperatures. Even the 30.7 wt% MnO_x -CeO $_2$ shows a much lower reduction temperature compared with the pure MnO_x . The XPS spectra in Figure 1 show that the Mn is stabilized in a higher oxidation state for the lower MnO_x loadings. These results are consistent with the EXAFS results shown in Table 1 where the Mn-O and Mn-Mn bond distances for the 3.4% are shorter than for the 30.7% MnO_x -CeO $_2$ catalyst. Additionally the Mn-Mn coordination number (not shown in Table 1) was lower for the 3.4% than the 30.7% catalyst. The XPS and EXAFS results point to the presence of small MnO_2 clusters in close contact with the CeO $_2$ and that the cluster size increases with MnO_x loading. DFT calculations show that the NO_2 formation and desorption on MnO_2 cluster supported on the CeO_2 (MnO_2/CeO_2) are significantly facilitated by the interfacial Mn—O—Ce sites, compared to the pure CeO_2 . In addition, DFT results also suggest that the oxygen vacancies generated by the NO_2 desorption are more easily replenished on the MnO_{2-x}/CeO_2 compared to the either CeO_{2-x} or MnO_{2-x} . The proposed active sites will be justified on the bases of the DFT along with IR results. **Figure 1**. Temperature programmed reduction (left) and Mn2pXPS spectra for the MnOx-CeO₂ catalysts after oxidation at 500 °C. | | BET (m²/g) | Mn/Ce
(XPS) | Conversion (%) | TOF
(min ⁻¹)* | Mn–O
(Å) | Mn-Mn
(Å) | |------------------|------------|----------------|----------------|------------------------------|-------------|--------------| | 3.4% | 132 | 0.2 | 11.2 | 476 | 1.84 | 2.80 | | 14.7% | 115 | 0.64 | 13.9 | 212 | | | | 30.7% | 87 | 0.69 | 18.8 | 348 | 1.86 | 2.86 | | MnO _x | 14.7 | - | 7.2 | 541 | 1.90 | 3.16 | **Table 1.** BET surface area, Mn/Ce ratio from XPS, NO conversion to NO₂ at 200 °C, reaction rate normalized to Mn on the surface (TOF), Mn–O and Mn–Mn bond lengths from EXAFS. *using Mn/Ce from XPS and a surface density of ~ 11.2 atom/nm². # Significance We identified the active phase and the plausible mechanism for NO oxidation on MnO_x - CeO_2 . We showed that small MnO_2 clusters supported on ceria show high activity for NO oxidation. The findings will help in the design of Pt-free catalysts for LNT and DOC. ## References 1 M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). 2 C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).