An insight into the correlation of solid solution and surface active species in MnO_x-CeO₂ mixed oxides toward soot oxidation

Junmin Lin¹, Mingli Fu^{1, 2}, Junliang Wu¹, Limin Chen¹, Bichun Huang¹, William Wen³, Daiqi Ye^{1, 2}*

¹College of Environment and Energy, South China University of Technology, Guangzhou 510006, China;

³Centre for Clean Environment and Energy, Environmental Futures Centre, and Griffith School of Environment, Griffith University, Gold Coast, QLD 4222, Australia *corresponding author: cedaye@scut.edu.cn

Introduction

 ${\rm MnO_x\text{-}CeO_2}$ has showed superior activity for soot abatement. It has been reported that the synergistic effect of the bimetal oxides in the solid solution favoring to soot oxidation, due to the incorporation of Mn into the ceria lattice, accelerated the oxygen mobility and promoted the evolution of lattice oxygen. However, the formation of solid solution and its correlation with these activity-determining parameters still need a further investigation.

Our previous works ^[1,2] showed that oxygen species was critical in soot oxidation. This paper will focus on the activities of different Mn-doped ceria catalysts with various Mn/(Mn+Ce) ratios toward soot oxidation under O₂/Ar. The effect of Mn-doping content on generating MnOx-CeO₂ solid solution and its correlation with physicochemical properties of the catalysts are studied. Finally, the key factors in determining the catalytic activity and the reaction path way for soot oxidation are tentatively discussed.

Materials and Methods

All the samples were prepared by citric acid complex method^[17].

Results and Discussion

Figure 1 shows the XRD patterns (a, b) of and TPO patterns (c) of soot oxidation on the CeO_2 , MnOx(z)- CeO_2 and MnOx. And the calculated average crystallite size and lattice cell parameters [18-21] are listed in **Table 1**.

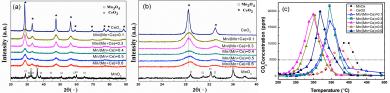


Figure 1. XRD profiles of various MnO_x(z)-CeO₂ catalysts (a: $2\theta=20^{\circ}-80^{\circ}$; b: $2\theta=20^{\circ}-40^{\circ}$)

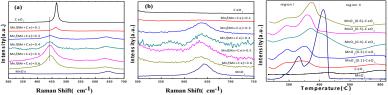
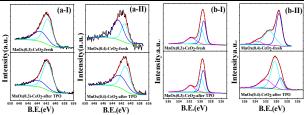



Figure 2. Raman spectra (a, b) and H₂-TPR profiles(c) of MnO_X(z)-CeO₂ catalysts

Figure 2 displays the Raman spectra (a, b) and H_2 -TPR profiles(c) of catalysts. Figure 3 shows the XPS analysis of fresh and reacted MnOx(z)- CeO_2 (z=0.3, 0.4). The surface atomic ratios calculated from the XPS spectra of the catalysts are summarized in Table 2.

Table 1. Specific surface area, average crystallite size and lattice parameter of MnO_x(z)-CeO₂

Catalyst	$SSA/(m^2 \cdot g^{-1})$	d ^a (nm)	Lattice parameter (nm)			
CeO_2	15.8	16.10	0.5402			
$MnO_x(0.1)$ - CeO_2	107.8	5.25	0.5385			
$MnO_x(0.3)$ - CeO_2	90.9	6.33	0.5399			
$MnO_x(0.4)$ - CeO_2	125.2	4.87	0.5375			
$MnO_x(0.5)$ - CeO_2	113.7	5.06	0.5381			
$MnO_x(0.6)$ - CeO_2	104.4	4.91	0.5389			
MnO_x	5.7	24.06	-			

 $\textbf{Figure 3.} \ XPS \ spectra \ of \ Mn2p(a) \ and \ O1s(b) \ for \ MnO_x(0.3)-CeO_2(I) \ and \ MnO_x(0.4)-CeO_2(II)$

Table 2. Atomic ratios by XPS surface compositional analysis

Comple	Mn/	O/ (at. %)		Ce ⁴⁺ /Ce ³⁺	Mn ⁴⁺ /(Mn ²⁺ +Mn ³⁺)	
Sample	Ce	Oads	O _{sur}	O _{latt}	Ce /Ce	NIII /(NIII +NIII)
MnO _x (0.3)-CeO ₂ -Fresh	0.30	23.5	32.0	44.5	4.41	0.63
MnO _x (0.3)-CeO ₂ -reacted	0.29	26.9	30.4	42.6	4.13	0.31
MnO _x (0.4)-CeO ₂ -Fresh	0.42	8.0	41.5	50.5	4.47	1.75
MnO _x (0.4)-CeO ₂ - reacted	0.37	26.5	55.6	17.9	4.05	0.78

Significance

Moderate Mn-doping amount favors to the formation of MnOx-CeO $_2$ solid solution, corresponding to smaller crystallite size, greater specific surface area and more oxygen vacancies, and then the redox properties of the catalyst are enhanced. Therefore, the mobility and transformation of oxygen species on the catalyst are improved, which promotes the catalytic oxidation of soot. Mn $^{4+}$, O_{latt} , O_{sur} and Ce^{4+} are proposed to play important roles in soot oxidation.

Acknowledgement

This paper is supported by the National Natural Science Foundation of China (No.51108187, No.50978103), the Guangdong High Education Engineering Technology Research Center for Air Pollution Control (No. GCZX-A0903) and the Guangdong Natural Science Foundation, China (Grant No. S2011010000737).

References

- 1. Fu,M.L.; Wang,K.L.; Yu,R.P.; et al, Chinese J. Inorg. Chem. 2012, 28, 1593.
- 2. Fu, M. L.; Lin, J. M.; Zhu, W. B.; et al. J.Rare Earths 2014, 32, 153.

²Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China;