Selective catalytic oxidation (SCO) of ammonia to nitrogen over mesoporous zeolite

<u>Runduo Zhang</u>^{*}, Tun Peng State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China *corresponding author: zhangrd@mail.buct.edu.cn

Introduction

Ammonia (NH₃) is widely found in industrial processes and the removal of NH₃ from waste gas streams is becoming increasingly important because of environmental concerns. For those many ways to removal NH₃, selective catalytic oxidation (SCO) of NH₃ to N₂ is an ideal technology for removing NH₃ from waste gases, and it has been of increasing interest in recent years^[1]. A number of catalysts have previously been applied to oxidize gaseous NH₃, such as noble metal (Pt, Ir and Au), Ni, Fe, and Mn oxides supported on γ - Al₂O₃, CuO/Al₂O₃, Ag/Al₂O₃, Fe-exchanged ZSM-5 and other zeolites. These catalysts exhibited activities for N₂ formation under various conditions. Among these catalysts, metal ion supported on zeolites showed interesting activity and selectivity at low temperatures.

Mesoporous SBA-15 zeolite constitutes one kind of the excellent catalyst support due to its superhigh surface area, ordered pore arrangement, adjustable pore sizes ,and high hydrothermal and thermal stability. For these unique features, in the present study, a wide range of transition metals modified SBA-15 samples (M/SBA-15) [M = (Cu, Co, Fe, Mn, Ni) and Cu supported on SBA-16, KIT-6] were prepared and characterized.

Materials and Methods

The catalysts were prepared using impregnation method. The experiments were run in a quartz fixed-bed reactor (3 cm i.d.). They were conducted at 1000 ppm NH₃, 5% O₂ GHSV = 45,000 h⁻¹ and 100 to 500 °C by steps of 50 °C. The effluent gases (NH₃, N₂O, NO and NO₂) were monitored an infrared gas analyzer equipped with a 2.4 meter long-path gas cell and TQ analysis software. They were characterized by X-ray diffraction (XRD), surface area (BET), transmission electron microscopy (TEM), temperature-programmed reduction by hydrogen (H₂-TPR), X-ray photoelectron spectroscopy (XPS), temperature-programmed oxygen isotopic exchange (TPOIE) as well as the activity tests for selectively catalytic combustion of NH₃.

Results and Discussion

As presented in **Figure 1A**, it can be found that Co/SBA-15 presenting a strong oxygen mobility than the other two samples and SBA-15 almost have no oxygen mobility. For these three samples, the α_g^{t} of Cu/SBA-15 decreased most, while for Co/SBA-15 and SBA-15, it only have a little decrease. Nevertheless, we could consider that this reaction remained a good oxide surface characterization due to the limited participation of the bulk oxygen atoms at the temperature studied ^[2]. At **Figure 1B**, it can be shown that the rate of P₃₄ rise follow a decreasing order of Cu/SBA-15 > Cu/SBA-16 > Cu/KIT-6. While the α_g^{t} of all samples decrease, Cu/SBA-16 shows the highest value 47% at 550 °C and Cu/SBA-15 shows the lowest one. It can be found that Cu/SBA-15 have the strongest oxygen mobility.

Figure 2 shows the NH₃ conversion of temperature during NH₃ combustion over catalysts. For M/SBA-15, it can be fund that the NH₃ conversion follow a decreasing order of Cu/ \approx Co/> Mn/> Fe/ \approx Ni/SBA-15 > SBA-15. And for different zeolites, the sequence is : Cu/SBA-15 > Cu/SBA-16 \approx Cu/KIT-6. In summary, Cu/SBA-15 is a promising candidate used as a catalyst for NH₃ selective combustion towards unharmful N₂.

Significance

After impregnating the various metallic components, metal-promoted mesoporous silica exhibits remarkable NH₃ activity, which strongly depends on the essentially chemical nature of metals doped and their dispersity.

Cu/SBA-15 shows the strongest oxygen mobility and best catalyst performance.

References

- Long, R.Q. and R.T. Yang, Selective Catalytic Oxidation (SCO) of Ammonia to Nitrogen over Fe-Exchanged Zeolites[J]. Journal of Catalysis, 2001. 201(1): p. 145-152.
- [2]. Yang, W., et al., Activity of perovskite-type mixed oxides for the low-temperature CO oxidation: Evidence of oxygen species participation from the solid[J]. Journal of Catalysis, 2012. 295(0): p. 45-58.