N₂O decomposition over structurally promoted Ir/Al₂O₃ catalysts

<u>Eleni F. Iliopoulou^{1*}</u>, Eleni Pachatouridou^{1,2}, Eleni Papista³ Andreas Delimitis¹, Georgios E. Marnellos^{2,3}, Michalis Konsolakis², Ioannis Yentekakis³

¹CPERI/CERTH, GR-57001 Thermi, Thessaloniki, Greece ²Technical University of Crete, GR-73100 Chania, Crete, Greece, ³University of Western Macedonia, GR-50100 Kozani, Greece *Corresponding author: eh@cperi.certh.gr

Introduction

Nitrous oxide (N₂O) has been recently recognized as a powerful greenhouse gas as well as the dominant ozone-depleting contributor. Its catalytic decomposition to N₂ consists one of the most efficient technologies for N₂O abatement, while noble metal supported catalysts, in particular Rh, Pt and Pd, seem to exhibit the best activity [1]. In this work the N₂O decomposition efficiency of Al₂O₃ supported Ir catalysts is studied. Moreover, the impact of rare earth oxides (CeO₂ or Ce_{0.8}La_{0.2}O_{1.9}) as structural modifiers of Al₂O₃-based Ir catalysts is explored. Extensive characterization was undertaken to reveal the structure-activity correlation.

Materials and Methods

A series of Ir catalysts over alumina (Al₂O₃) and structurally promoted alumina (AlCe: consisting of 80 wt % Al₂O₃-20 wt % CeO₂ and AlCeLa: consisting of 80 wt % Al₂O₃-20 wt % CeO₂ and AlCeLa: consisting of 80 wt % Al₂O₃-20 wt % CeO₈La_{0.2}O_{1.9}) supports were tested. All supports were synthesized via the coprecipitation method, while the Ir active phase (0.5 wt %) was impregnated using IrCl₃·H₂O as the precursor salt. All catalytic materials were characterized via: BET, XRD, HR-TEM and TPR-H₂ and tested for N₂O decomposition in a bench-scale fixed bed reactor unit.

Results and Discussion

The XRD patterns and TPR-H₂ profiles of all three Iridium catalysts are presented in **Figure 1**. Interestingly, the presence of IrO₂ is evidenced from the XRD patterns (peaks at $2\theta=28^{\circ}$, 34.7° & 54°), in spite the very low metal loading (0.5 wt%). During TPR analysis, all catalysts (Ir/ Al₂O₃, Ir/ AlCe and Ir/ AlCeLa) exhibit a well-defined reduction peak at 220-226°C, which may be attributed to the reduction of this IrO₂ phase [2].

XRD detection of IrO_2 phase can be ascribed to the formation of large Ir particles, as confirmed by HR-TEM analysis (**Figure 2a**). In the case of Ir/Al_2O_3 catalyst, Ir seems to be additionally present at high dispersion, forming Ir clusters on alumina. On the contrary, Ir was solely detected as large crystalline IrO_2 particles, on both Ir/AlCe and Ir/AlCeLa catalysts.

Catalytic performance in N₂O decomposition in the absence and presence of oxygen is presented in **Figure 2b.** In the absence of O₂, all three Ir-based catalysts present similar catalytic behavior, achieving N₂O conversions as high as ~100% at 600°C, suggesting no significant effect of structural modifiers. On the contrary, in the presence of O₂ the deN₂O efficiency is significantly enhanced, when modifying the alumina support with Ce and La. The highest initial N₂O conversion (~66% at 600°C) of Ir/Al₂O₃ was enhanced to 90% and ~96% over the structurally-promoted Ir/AlCeLa and Ir/AlCe catalysts respectively. In addition, the N₂O conversion profiles were shifted to significantly (up to 100 °C) lower temperatures.

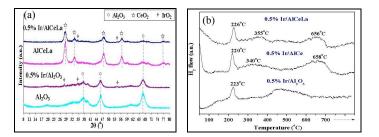
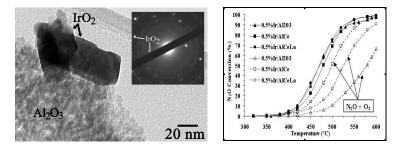
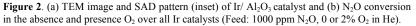




Figure 1. Characterization results (a) XRD patterns and (b) TPR-H₂ profiles of Ir catalysts.

Significance

So far, noble metal-based catalysts (in particular Rh, Pt and Pd) are presented as the most efficient for the de-N₂O process. However, their scarcity and consequent high price render their utilization unadvisable. On the contrary, Ir-based catalysts seem to be promising alternatives for N_2O decomposition.

Acknowledgments

This research has been co-financed by European Union (European Social Fund) and Greek national funds through Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)-Research Funding Program: THALES-Investing in knowledge society through the European Social Fund (MIS 375643).

References

- 1. Konsolakis, M.; Aligizou, F.; Goula, G.; Yentekakis, I.V. *Chemical Engineering Journal* **2013**, 230, 286.
- 2. Vicerich, M.A.; Benitez, V.M.; Especel, C.; Epron, F. Applied Catalysis A: General 2013, 453, 167.