Impact of Axial Catalyst Configuration on the Performance of Coupled LNT-SCR Catalysts Studied by Spatiotemporal Resolution of Reactions

<u>Mi-Young Kim</u>¹, Jae-Soon Choi^{1,*}, Mark Crocker² ¹Oak Ridge National Laboratory, Knoxville TN 37932 USA ²University of Kentucky, Lexington KY 40511 USA *corresponding author: choijs@ornl.gov

Introduction

Recently, the concept of coupled LNT and SCR catalysts has been introduced to the automotive NO_x control community in order to achieve higher NO_x conversion than is possible with stand-alone LNTs. Besides enhanced NO_x conversion, combining SCR and LNT catalysts offers other performance advantages such as lower N₂O slip and reduced catalyst cost due to lower precious metal loading [1,2]. Several LNT-SCR configurations have been proposed including sequential (LNT brick + SCR brick), sandwiched (multiple alternating LNT-SCR bricks), double-layer (one brick with an SCR washcoat on top of an LNT washcoat), and mixed (one brick with one washcoat layer of physically mixed LNT and SCR catalyst particles) [2]. In this study, we measured the spatiotemporal distribution of reactions along two different LNT-SCR catalyst configurations (sequential vs. sandwiched) to better understand the interplay between LNT and SCR components under lean/rich cycling conditions. Specifically, we assessed the impact of changes in reaction distribution on NO_x reduction performance.

Materials and Methods

A low Pt/Rh and medium Ce loaded LNT catalyst and a commercial SCR catalyst based on Cu-chabazite zeolite were evaluated in a bench flow reactor. The two catalyst configurations studied were 1.5" LNT + 1.5" SCR and 0.75" LNT + 0.75" SCR + 0.75" LNT + 0.75" SCR; both configurations were composed of the same LNT and SCR monolith cores. A quadrupole mass spectrometer (Pfeiffer) and a high-speed FTIR gas analyzer (MKS) were used for spatiotemporally resolved gas analysis. The catalyst was studied under conditions relevant to coupled LNT-SCR applications: Lean (60 s) – 500 ppm NO, 8% O₂, 5% H₂O, 5% CO₂, N₂ balance; Rich (5 s) – 2.5% H₂ (with or without 278 ppm C₃H₆), 5% H₂O, 5% CO₂, N₂ balance. NO_x reduction performance was evaluated over 200-400 °C. Spatiotemporal profiles of gas concentrations were measured at 1L (outlet), 0.75L, 0.5L, 0.25L, and 0L (inlet) locations.

Results and Discussion

As shown in Figure 1, the results confirm the positive impact of adding an SCR catalyst to an LNT catalyst with respect to NO_x conversion over the entire temperature range. As reported in the literature, the additional NO_x conversion was achieved through reactions over the SCR catalyst between NO_x and NH_3 slipped from the LNT catalyst. Very similar outlet conversion levels were achieved for both LNT-SCR and LNT-SCR-LNT-SCR configurations under the conditions used in this study. While NO_x conversion over the LNT sections was significantly higher at 400 °C than 300 °C (compare for instance conversion levels at 0.25L location in Figure 1), the overall outlet conversion was the highest at 300 °C. This is likely due to greater NH_3 generation from the LNT and higher subsequent storage on the SCR catalyst at 300 °C; H_2 was not effective in reducing NO_x over the SCR catalyst. Adding 278 ppm C_3H_6 to the rich feed (resulting in 10% increase in total reductant) at 400 °C

increased LNT NH_3 slip, but the increased amount was not enough to significantly impact the NO_x conversion over the SCR catalyst bricks.

A major difference between the sequential and sandwiched configurations observed in this study was the N₂O yield at 200 °C, a considerably lower value being obtained for the sandwiched configuration (Figure 1). The data show that most of the N₂O was generated over the LNT catalyst. In the case of the sequential configuration, more N₂O was generated over the 2^{nd} LNT section (0.5L) than over the 1^{st} LNT section (0.25L) (Figure 1a). Furthermore, the N₂O produced over the 2^{nd} LNT section of the sequential configuration was considerably higher than that over the sandwiched counterpart (0.75L, Figure 1b) despite a similar level of NO_x converted in both cases. These results support the idea that NO_x reduction by NH₃ is a major contributor to the N₂O formation over LNT catalysts [3]. It is thus reasonable to conjecture that N₂O formation can be further mitigated by increasing the number of alternating LNT-SCR zones due to effective "elimination" of NH₃ entering downstream LNT sections. It has been reported that LNT-generated N₂O can be reduced over the SCR catalysts by H₂ and NH₃ [1]. However, the involvement of such N₂O reduction pathways seems to have been minor under our experimental conditions; N₂O profiles indicate a temporal mismatch between N₂O and reductant pulses traveling the SCR catalysts (results not shown) as a possible reason.

Figure 1: Axial evolution of cycle-averaged NO_x conversion and N₂O yield over coupled LNT-SCR catalysts during 60/5-s lean/rich cycling: (a) 1.5" LNT + 1.5" SCR ("sequential" configuration), (b) 0.75" LNT + 0.75" SCR + 0.75" LNT + 0.75" SCR ("sandwiched" configuration); solid line – NO_x conversion, dashed line – N₂O yield.

Significance

Insights into the interplay between LNT and SCR components gained through spatiotemporal resolution of reactions can facilitate the development of optimal LNT-SCR designs and operating strategies.

References

- 1. Wang, J.; Crocker, M. Catalysis Letters 2012, 142, 1167.
- 2. Liu, Y.; Harold, M. P.; Luss, D. Applied Catalysis B: Environmental 2012, 121-122, 239.
- 3. Choi, J.-S.; Partridge, W. P.; Pihl, J. A.; Kim, M.-Y.; Kočí, P.; Daw, C. S. Catalysis Today 2012, 184, 20.