Effect of SO₂ on vanadium-modified Fe/AC catalysts for the NH₃-SCR of NO₂ at low temperatures

Weiwei Yang, Fudong Liu, Lijuan Xie, Zhihua Lian, Hong He* Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. *corresponding author: honghe@rcees.ac.cn

Introduction

Nitrogen oxides (NO_x) from stationary sources contribute greatly to air pollution. Selective catalytic reduction (SCR) of NO_x with NH₃ has been an effective way to abate NO_x emissions throughout the world. For power station boilers, a low temperature SCR catalyst with good resistance to SO₂ is needed, because it can avoid re-heating of the flue gas and enable retrofitting the SCR device into existing systems, saving energy and reducing cost. Carbon-based catalysts have received great attention due to their high surface area and ease of modification. A carbon-supported vanadium oxide catalyst was reported to show excellent NH₃-SCR activity in the presence of SO₂ when the V₂O₅ loading was less than 5% [1]. However, this V₂O₅/AC catalyst is not recommended for practical applications on account of its limited activity at low temperature and bio-toxicity. Iron-based catalysts have been studied widely due to their good NH₃-SCR activity at medium temperatures [2]. In this study, we report an Fe/AC catalyst modified by a small amount of V₂O₅ with the aim of developing a catalyst with good activity as well as SO₂ durability at low temperatures. The influence of V₂O₅ on the SCR activity and SO₂ deactivation is elucidated in detail using results from multiple characterization methods.

Materials and Methods

The activated carbon support was ground to 40-60 mesh and pre-oxidized with HNO₃ before use. Vanadium-modified iron catalysts supported on carbon were prepared by a co-impregnation method. Briefly, the pretreated carbon was impregnated with the required amount of solution containing iron nitrate, ammonium vanadate and oxalic acid. Subsequently, the mixture was evaporated using a rotary evaporator at 60 °C until the excess water was removed, dried at 110 °C overnight and then calcined at 500 °C for 5h. The catalysts are denoted 3% Fe-xV/AC, where *x* represents the mass ratio of V₂O₅ to AC. Reaction tests were carried out in a fixed-bed quartz tube reactor at a space velocity of 30,000 h⁻¹. Detailed characterization was conducted including X-ray diffraction (XRD), Temperature programmed desorption (TPD), Scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS).

Results and Discussion

The BET surface area and pore structure distribution of catalysts are listed in **Table 1**. The textural loss observed for activated carbon oxidized with HNO₃ is possibly due to the blockage of the entrance of micropores by oxygen functional groups, as well as collapse of the pore structure [3]. After loading with active components, the BET area and micropore volume increased, especially with addition of V_2O_5 . These results indicate that V_2O_5 may contribute to the dispersion of Fe₂O₃ on the surface of the activated carbon and the XRD results are consistent with this point of view.

Table 1. Surface and pore volume of raw AC, HNO3-oxidized AC and Fe-V/AC catalysts.

Catalyst	BET surface area(m ² g ⁻¹)	micropore volume(cm ³ g ⁻¹)	micropore area(m ² g ⁻¹)	mesopore volume(cm ³ g ⁻¹)
AC(raw)	839	0.370	762	0.103
AC(HNO ₃)	665	0.283	600	0.083
3%Fe	976	0.447	883	0.316
3%Fe-0.3%V	1006	0.443	840	0.161
3%Fe-0.5%V	1004	0.453	942	0.247
3%Fe-0.7%V	1177	0.510	1073	0.302

Figure 1 a) shows the results of NO_x reduction over AC-supported Fe₂O₃ with $V_{2}O_{5}$ addition varying from 0 to 0.7 wt% as a function of temperature. It can be seen that the pristine Fe/AC catalyst without modification by V_2O_5 already possesses good activity. After the addition of V_2O_5 at 0.3 wt% and 0.5 wt%, the activity of catalysts decreases by 5% at low temperature and varies slightly above 200°C. When the content of V_2O_3 is further increased to 0.7 wt%, the catalyst activity decreases more markedly. The results indicate that Fe contributes the dominant active sites, which are covered by vanadium species when the V_2O_5 loading is overly high. Figure 1 b) shows the effect of SO_2 on NO_x reduction over the vanadiummodified Fe/AC catalysts. All these catalysts demonstrate similar activity without SO₂, and the activity of all catalysts decreases immediately once SO₂ is introduced. The addition of different amounts of vanadium improves the SO₂ durability of catalysts to different extents. The activity gradually increases in the presence of SO₂ as a function of time with vanadium loading increasing from 0 to 0.5 wt%. However, the SO₂ tolerance is not further enhanced when the vanadium is increased to 0.7 wt%. Overloading of V_2O_5 may result in formation of excessive sulfuric acid, which will be transferred to Fe₂O₃, thus sulfurizing the active components and resulting in loss of activity.

Figure 1. a) Steady-state NO_x conversion over Fe-V/AC catalysts as a function of temperature. b) Effect of V_2O_5 addition on the SO₂ tolerance of catalysts.

Significance

Addition of a small amount of V_2O_5 to Fe_2O_3 loaded on active carbon influenced the NH₃-SCR activity slightly, yet decreased the SO₂ deactivation to a certain extent. Overloading of V_2O_5 is not beneficial to SCR activity and SO₂ tolerance.

References

- [1]. Z. P. Zhu, Z. Y. Liu, J Catal 187, 245-248 (1999).
- [2]. F. Liu, H. He, C. Zhang, Chem. Commun. 2043 2045 (2008).
- [3]. A. Boyano, M.E. Galvez, R. Moliner, M.J. Lazaro. Fuel 87, 2058 2068 (2008)