Insights into the influence of the Ag loading on Al₂O₃ in the H₂-assisted C₃H₆-SCR of NO_x: a kinetic study

C. Thomas*, T. Chaieb, L. Delannoy, G. Costentin, C. Louis UPMC, UMR CNRS 7197, Laboratoire de Réactivité de Surface, Paris, 75252, France **cvril.thomas@upmc.fr*

Introduction

The catalytic reduction of NO_x to N_2 in a strongly oxidizing medium is not trivial. Among the catalysts evaluated in the selective catalytic reduction of NO_x by the hydrocarbons (HC-SCR), Ag/Al₂O₃ has been reported to be the most promising catalyst in the pioneering work by Miyadera [1]. Yet the use of such Ag/Al₂O₃ catalysts is limited because of the restricted operating temperature window (300 - 500 °C) within which these materials efficiently catalyze the HC-SCR reaction [1]. The discovery of a low-temperature promoting effect of H₂ on the HC-SCR of NO₇ by Satokawa [2] is a major breakthrough for Ag/Al_2O_3 catalysts. To our knowledge, the influence of the Ag loading on the H2-assisted HC-SCR of NO_x (H₂-HC-SCR) has been the subject of a very limited number of investigations [3,4], most of the works in this field reporting on Ag/Al₂O₃ samples with a nominal Ag loading close to 2 wt% which has been shown to provide optimum HC-SCR performances [5 and refs, therein].

The aim of the present work is to gain further understanding on the influence of the Ag loading of Ag/Al₂O₃ samples in the H₂-assisted C_3H_6 -SCR of NO_x (H₂-C₃H₆-SCR). This study also reports on original findings in the influence of the Ag loading on the kinetics of H₂- $C_{3}H_{6}$ -SCR correlated with the NO₂-TPD characterization of the corresponding catalysts [5]. This helps explain the observed catalytic trend in the H_2 -promoted C_3H_6 -SCR reaction.

Materials and Methods

 $Ag(Ag/nm^{2}_{Al2O3})/Al_{2}O_{3}$ samples were prepared by incipient wetness impregnation of γ -Al₂O₃ (180 m²/g) by aqueous solutions of AgNO₃ to achieve Ag loadings varying from 0.5 to 4.3 wt% (Ag surface densities varying from 0.14 to 1.31 Ag/nm²_{Al2O3}). After ageing at RT (6 h) and drying at 100 °C (12 h), the samples were calcined in a muffle furnace at 600 °C (3 h). The samples were characterized by N₂ sorption and NO_x adsorption at RT (400 ppm NO_x - 8 % O₂ - He) followed by temperature-programmed desorption from RT to 600 °C (8 % O₂/He, 3 °C/min, NO_x-TPD method [5]). The H₂-C₃H₆-SCR performances (0.21 % H₂ - 400 ppm C₃H₆ -400 ppm NO_x - 8 % O₂/He) were measured in a U-type quartz reactor on 0.38 g mechanical mixtures of the Ag/Al₂O₃ samples and Al₂O₃ so as to keep the amount of Ag in the reactor constant (30.9±1.2 µmol). Kinetic measurements were also performed.

Results and Discussion

In agreement with earlier investigations, the addition of H_2 drastically promoted the C_3H_6 -SCR reaction for temperatures lower than 400 °C. The addition of 0.21 % H₂ in the feed shifted the NO_x to N₂ and C₃H₆ to CO_x conversions to temperatures approximately 150 °C lower than those obtained in the C_3H_6 -SCR reaction for all samples. The NO_x reduction temperature window broadened to lower temperatures as the Ag surface density (Ag loading) increased. The broadening of the NO_x reduction activity to lower temperatures occurred, however, at the expense of the NO_x conversions at the higher temperatures. In contrast to C_3H_6 -SCR, the present study highlights for the first time that the H2-C3H6-SCR catalytic

Significance

The unexpected higher catalytic performances of the Ag samples with the lower Ag surface densities was attributed to their higher concentration of Al₂O₃ sites able to chemisorb NO_x species, in agreement with the NO_x uptake data.

References

- Miyadera, T. Appl. Catal. B 1993, 2, 199. 1.
- 2. Satokawa, S. Chem. Lett. 2000, 294.
- Shimizu, K-I.; Yokota, S.; Okumara, K.; Satsuma, A. J. Phys. Chem. C 2007, 111, 950. 3.
- 4. Sadokhina, N. A. et al. Kinetics Catal. 2012, 53, 107.
- Chaieb, T.; Delannov, L.; Louis, C.; Thomas, C. Appl. Catal. B 2013, 142-143, 780. 5

reaction (a) 02 order 0.8 reaction 0.4 (b) C₃H₆ order rea (c) (kJ/mol) 90 60 30 . آرا (å) 0.0 0.4 0.8 1.2 Ag surface density (Ag/nm²_{Al2O3})

order

0.2

Figure 2. Influence of the Ag surface density of Ag/Al₂O₃ catalysts on the kinetic parameters of the H₂-C₃H₆-SCR reaction. $(-\bullet -)$ NO_x uptakes [5].