The correlation of poisoning effect of P and the redox properties for NH₃ and NO oxidation over CeO₂-MoO₃ catalyst for DeNO_x

<u>Huazhen Chang</u>, Yuankai Shao, Wenkang Su, Jiming Hao and Junhua Li* School of Environment, Tsinghua University, Beijing, 100084 (China) *corresponding author: lijunhua@tsinghua.edu.cn

Introduction

Phosphorus exists in fossil fuel and especially in biomass fuel. Co-combustion of coal and biomass fuels increases the content of phosphorus in produced fine particles and flue gas. The deactivation effect of phosphorus compounds on the selective catalytic reduction (SCR) DeNO_x catalysts from flue gas has been identified previously.¹ Formation of vanadyl phosphate, pore blocking by phosphoric acid or phosphorus (V) oxide are supposed as the main causes of V-based catalyst deactivation. Over the lifetime of a heavy-duty diesel vehicle equipped with a SCR system, phosphorus compounds deposited on the surface of the V₂O₅/WO₃-TiO₂ catalyst also affect its activity and selectivity. Up to now, there's no effective way to avoid P-poisoning of V-based catalyst yet.²

Li et al. ³ reported that CeO₂ catalyst with addition of phosphorus showed excellent NH₃-SCR activity in a wide temperature range. However, other researchers found that incorporation of P caused a significant decline in the concentration of labile active (OSC) and total (OSCC) oxygen species, and resulted in deactivation of Ce-based catalyst. ⁴ In this study, the SCR activity and influence of phosphorus on CeO₂, CeO₂-MoO₃ and VMo/Ti catalysts were studied. An extensive investigation has been undertaken in our laboratories, aiming at a better understanding of the P-poisoning effect and chemico-physical properties of Ce-Mo-O catalytic system.

Materials and Methods

The Ce-Mo-O composite oxide catalysts were prepared by a co-precipitation method, where Ce(NO₃)₃ and (NH4)₆Mo₇O₂₄ used as the catalyst precursors and (NH₄)₂CO₃ as precipitator. The samples are expressed as Ce-Mo(*x*)-O, where *x* denotes the molar ratio of Mo/Ce, e.g. Ce-Mo(0.5)-O. The P-poisoned catalysts were prepared by impregnation of samples in aqueous solution of corresponding amount of NH₄H₂PO₄, followed by drying and calcination at 500 °C for 4 h. These P-contaminated loadings are within the range detected in aged commercial catalyst.⁴ The catalysts were characterized by BET, DRIFTS, and NH₃-TPD, and their NH₃-SCR activity was measured in a flow reactor.

Results and Discussion

A series of Ce-based catalysts were synthesized by addition of Mo and the sample with a molar ratio of Mo/Ce=0.5 (Ce-Mo(0.5)-O) exhibited the best SCR activity. Meanwhile, it showed much better N₂ selectivity at high temperatures comparing with traditional VMo/Ti catalyst. For NH₃ oxidation, the N₂ selectivity was kept at >91 % below 400 °C and decreased at high temperatures due to the formation of N₂O over Ce-Mo(0.5)-O catalyst; whereas, larger amount of N₂O and NO formed over VMo/Ti catalyst, which can be attributed to the occurrence of the NH₃ oxidation on Mo. ⁵ The decrease of N₂ selectivity of both NH₃-SCR and NH₃-SCO (selective catalytic oxidation of NH₃) contributed to the formation of nitrous oxide.

The effects of phosphorus over three catalysts (CeO₂, CeO₂-MoO₃ and VMo/Ti) for NH₃-SCR were studied. With addition of 1.3 wt% P, the SCR activity of VMo/Ti decreased dramatically at low temperature due to the impairment of redox property for NO oxidation; meanwhile, the activity over CeO₂ and CeO₂-MoO₃ catalysts was improved. The superior NO oxidation activity contributes to the activity over P-poisoned CeO₂ catalyst. The increased surface area and abundant Brønsted acid sites (by DRIFTS) account for the excellent activity over P-poisoned CeO₂-MoO₃ catalyst. As the content of P increased to 3.9 wt%, the redox cycle over CeO₂ catalyst (2CeO₂ \leftrightarrow Ce₂O₃ + O*) was destroyed as phosphate accumulated (no activity in NH₃ oxidation at T < 400 °C), which led to the decline of SCR activity. However, more than 80% NO_x conversion and superior N₂ selectivity were obtained over CeO₂-MoO₃ at tr > 300 °C. The effect of phosphorus was correlated with the redox properties of SCR catalyst for NH₃ and NO oxidation. A spillover effect, in which phosphate transfers from Ce to Moduring calcination, was proposed. Moreover, CeO₂-MoO₃ catalyst was an ideal alternative for NO_x abatement from industrial flue gas, especially for the flue gas containing high content of phosphorus.

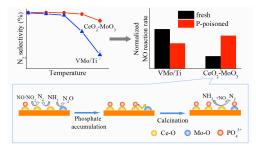


Figure 1. The comparison of N_2 selectivity and effects of P on VMo/Ti and CeO₂-MoO₃ catalysts; and the spillover effect of phosphate on CeO₂-MoO₃ catalyst.

Significance

A novel CeO₂-MoO₃ catalyst showed much better catalytic behavior and superior N_2 selectivity with respect to resistance to P up compared with traditional SCR catalyst (i.e., VMo/Ti). A spillover effect that phosphate transfers from Ce to Mo was proposed. The poisoning effect of P was correlated with the redox properties of SCR catalyst for NH₃ and NO oxidation.

References

- 1. Beck, J.; Brandenstein, J.; Unterberger, S.; Hein, K. R. G. Applied Catalysis B: Environmental 2004, 49, 15.
- 2. Kamata, H.; Takahashi, K.; Odenbrand, C. U. I. Catalysis Letters 1998, 53, 65.
- 3. Li, F.; Zhang, Y. B.; Xiao, D. H.; Wang, D. Q.; Pan, X. Q.; Yang, X. G. *Chemcatchem* **2010**, *2*, 1416.
- 4. Christou, S. Y.; Garcia-Rodriguez, S.; Fierro, J. L. G.; Efstathiou, A. M. *Applied Catalysis B: Environmental* **2012**, *111*, 233.
- 5. Lietti, L.; Nova, I.; Ramis, G.; Dall'Acqua, L.; Busca, G.; Giamello, E.; Forzatti, P.; Bregani, F. *Journal of Catalysis* **1999**, *187*, 419.