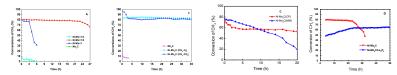
Ni-modified β-Mo₂C catalysts effective for the dry reforming of methane at atmospheric pressure

Shaohua Zhang¹, Anjie Zhang¹, Yali Zhang¹, Chaktong Au², Chuan Shi^{1*}

¹Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China ² Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China *corresponding author: chuanshi@dlut.edu.cn


Introduction

The DRM is attractive in terms of syngas production and industrial utilization. The catalysts for DRM processes are usually based on Group VIII metals. Among them, the nickel-based ones are commercially preferred due to the inherent availability and low cost of nickel. However, the problem with nickel-based catalysts is coke formation that leads to catalyst deactivation[1]. On the other hand, transition metal carbides show chemical properties similar to those of noble metals. Previous studies indicated that β -Mo₂C showed high thermal stability and good resistance to coking in the DRM [2]. However, the carbide catalysts deactivated rapidly due to oxidation by CO₂ at atmospheric pressure [3]. Herein, Ni modified β -Mo₂C catalyst were synthesized, which performed well in CH₄/CO₂ reforming at atmospheric pressure [4-7]. We summarized our recent work in the following aspects: (i) bi-functional catalysis of Ni-Mo₂C catalysts; (ii) in-situ synthesized Ni-Mo₂C catalysts ; (iii) influence of NiMoO_x precursors; (iv) La₂O₃ supported Ni-Mo₂C catalysts.

Materials and Methods

We prepared the NiMoO_x(CP) precursor by stirring an aqueous solution of $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ and $Ni(NO_3)_2\cdot 6H_2O$ at 80 °C for 4 h. The as-obtained NiMoO_x was filtered out and dried at 110 °C for 12 h and calcined at 550 °C for 4 h. Then NiMoOx was carburized in CH₄/H₂ to Ni-Mo₂C following a series of TPR[4]. The Ni-Mo₂C bimetallic carbide catalysts with Ni/Mo molar ratios of 1/3, 1/2, and 1/1 are denoted hereinafter as Ni-Mo₂C (1/3), Ni-Mo₂C (1/2), and Ni-Mo₂C (1/1), respectively. Compared with NiMoO_x(CP) (Ni/Mo=1/2) is the optimized molar ratio), The NiMoO_x(MM)(Ni/Mo=1/2) precursor was prepared by mixing MoO₃ and NiO powder mechanically. In addition, the catalysts were characterized by XRD, XPS, CO₂-TPO and H₂-TPR techniques. Catalytic performance of the a series of the catalysts was evaluated at 800 °C atmospheric pressure.

Results and Discussion

 $\label{eq:Figure A. Conversion of CH_4 over Ni-Mo_2C catalysts in CH_4/CO_2 dry reforming: CH_4/CO_2=1; F/W=12000 ml/g·h. \\ \mbox{Figure B. Conversion of CH_4 over of catalysts: CH_4/CO_2=1; F/W=6000 ml/g·h. }$

 $\label{eq:Figure C} \begin{array}{l} Figure C. Conversion of CH_4 \ over \ Ni-Mo_2C(MM) \ and \ Ni-Mo_2C(CP) \ catalysts: CH_4/CO_2=1; \ F/W=15000 \ ml/g \ h. \\ \hline Figure D. Conversion of CH_4 \ over \ Ni-Mo_2C \ and \ Ni-Mo_2C/La_2O_3 \ catalysts: CH_4/CO_2=1, \ F/W=12000 \ ml/g \ h. \\ \hline \end{array}$

The catalytic activity and stability are dependent on Ni/Mo molar ratio, stable catalytic performance could be achieved at a Ni/Mo molar ratio of 1/2. Characterization of the spent

samples revealed that the deactivation of Ni–Mo₂C (1/1) was due to coke formation whereas that of Ni–Mo₂C (1/3) was due to Mo₂C bulk oxidation. Only at a Ni/Mo molar ratio of 1/2, the catalytic oxidation–reduction cycle could be established.

The in-situ synthesized catalyst still exhibited stable activity at atmospheric pressure. Characterization and evaluation results indicate that the role of Ni is to facilitate CH_4 dissociation to generate active carbon and hydrogen species for the carburization of NiMoO_x.

The influence of NiMoO_x precursors on the catalytic behaviors of Ni-Mo₂C catalysts for CH_4/CO_2 reforming was investigated. Due to the formation of NiMoO₄(CP), molybdenum can be reduced at a temperature lower and nickel is better stabilized compared to that in form of NiO. With smaller Ni particles and higher CH₄ dissociation rate, Ni-Mo₂C(CP) performs better than Ni-Mo₂C(MM) in CH₄/CO₂ reforming.

In order to improve the dispersion and efficiency of the active components of Ni and β -Mo₂C, La₂O₃ supported Ni-Mo₂C catalyst was prepared. Though the catalyst's stability was greatly improved by such loading, it is interesting to find that Ni-Mo₂C/La₂O₃ changed its phase into Ni/La₂MoO₆ during the reaction, with only a small amount of β -Mo₂C left. With assistance of β -Mo₂C, better resistance of coke formation has been achieved. **Significance**

Ni-Mo₂C catalyst is a typical bi-functional catalyst for CH₄/CO₂ dry reforming. The dissociation of CH₄ is catalyzed by Ni, while the activation of CO₂ takes place on β -Mo₂C. By regulating the molar ratio of Ni and Mo₂C, there is a matching of CH₄ dissociation and CO₂ activation rates. Thus, a catalytic redox cycle is established and the deactivation due to carbon accumulation or oxidation of β -Mo₂C could be avoided. The catalytic activity and stability are dependent on Ni/Mo molar ratio, stable catalytic performance could be achieved at a Ni/Mo molar ratio of 1/2.

Ni-Mo₂C catalyst could be in-situ synthesized through carburization of NiMoO_x in methane and carbon dioxide feed gas for dry reforming of methane (DRM) at atmospheric pressure. It is a simple and effective way to produce Ni-Mo₂C catalyst in CH₄-CO₂ for the DRM.

The important roles of NiMoO₄ as a precursor for the generation of Ni-Mo₂C by carburization are addressed for the first time.

Though the stability was greatly improved by loading, it is interesting to find that Ni-Mo₂C/La₂O₃ changed its phase into Ni/La₂MoO₆ during the reaction, with only a small amount of β -Mo₂C left. The catalytic role of β -Mo₂C as an important intermediate to participate the reaction was clarified.

References

- 1. M.C.J. Bradford, M.A. Vannice, *Applied Catalysis A: General* 1996, 142, 73.
- 2. S. Tang, L. Ji, J. Lin, H.C. Zeng, K.L. Tan, K. Li, Journal of Catalysis 2000, 194, 424.
- 3. D.C. LaMont, W.J. Thomson, *Chemical Engineering Science* 2005, 60, 3553.
- Shi C, Guo J, Zhang AJ, Zhu AM: Advances in CO₂ Conversion and Utilization; American Chemical Society: Washington, DC, 2010.
- 5. Shi C, Zhang AJ, Li XS, Zhang SH: Applied Catalysis A: General. 2012, 431, 164.
- 6. Shi C, Zhang AJ, Zhu AM, Chen BB, Zhang SH: Catal Commun. 2011, 12, 803
- Shi C, Zhang SH, Li XS, Zhang AJ, Shi M, Qiu JS, Au C.T., Catalysis Today, 2014, 233,46.

Acknowledgement

The work was supported by the National Natural Science Foundation of China for funding (Nos. 21073024 and 21373037).