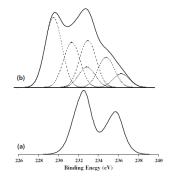
Reforming of hydrocarbons on partially reduced MoO₃/TiO₂

<u>S. Al-Kandari¹</u>, H. Al-Kandari², A. M. Mohamed¹, F. Al-Kharafi¹, A. Katrib¹* ¹Chemistry Department, Kuwait University, Safat, Kuwait ²College of Health Sciences, Public Authority for Applied Education and Training (PAAET), Faiha, Kuwait *corresponding author: ali.katrib@ku.edu.kw

Introduction

Hydroisomerization of C5–C6 light alkanes is an important catalytic process that increases the octane number of the gasoline pool and eliminates undesired aromatic compounds. We introduce a new catalytic systems based on partially reduced molybdenum or tungsten trioxides as a bulk or deposited on TiO₂. The delocalized p electrons over the M–M atoms placed along the C-axis of the deformed rutile structure of the MO₂ phase produce a metallic function of equivalent strength to the highly dispersed Pt particles. Dissociation of hydrogen by this metallic function to H atoms results in the formation of Brønsted M–OH on the sample surface. As a result, a bifunctional MO₂(H₄)_{mc} outermost surface laver is produced.


Materials and Methods

The equivalent of 5 monolayers of MoO_3 deposited on TiO_2 has been prepared by impregnating the right amount of molybdenum in ammonium heptamolybdate salt (Strem Chemicals). TiO_2 is Degussa P-25 (25% rutile) with pore volume of 0.5 cm³ g⁻¹ and BET surface area of 50 ± 5 m²g⁻¹. Catalytic reactions were studied by introducing the reactant as pulses of 5 mL at constant pressure, over a fixed-bed quartz reactor under atmospheric hydrogen pressure.

Results and Discussion

The exposure of the MoO₃/TiO₂ sample to hydrogen at 653 K reduces some of MoO₃ to Mo₂O₅ and MoO₂ (Figure 1). Most probably, the surface upper layer(s) consist of MoO₂, while Mo₂O₅ is present in the inter-phase. The UPS spectrum clearly shows the presence of a DOS structure (0.4 eV) at the Fermi-level characteristic of the metallic π electrons of the MoO₂.

A typical conversion of 80% and 90% of selectivity in isomerization products was obtained at 623 K. The major isomerization products are 2MP and 3MP present at the thermodynamic equilibrium ratio. Di-branched 2,2-DMB and 2,3-DMB were also obtained in the range of 18% of the isomerization products.

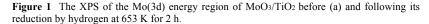


Table 1 isomerization reaction of products distribution of n-hexane (0.1 mL/min) as a function of reaction temperature on MoO_3/TiO_2 partially reduced at 673 K for 12 h; hydrogen flow 45 SLPH at 15 bar.

	Reaction temperature (K)		
	573	623	653
Conversion	34.5	80.1	82.2
Selectivity, %	92.9	88.2	80.3
Hydrogenolysis (C1-C4) %	7.1	11.8	19.7
2MP/3MP	1.4	1.5	1.4
2,2-DMB/2,3-DMB	0.6	1.3	1.6
Distribution (branched isomers	.%)		
iC4	0.3	0.7	1.6
iC5	0.7	3.8	8.0
2,2-DMB	3.8	10.6	11.6
2,3-DMB	6.2	8.4	7.3
2MP	48.1	38.8	30.4
3MP	33.7	25.9	21.4

Significance

Catalytic performances of the $MO_2(Hx)$ ac system in terms of Hydroisomerization of alkanes are comparable to those obtained by the Pt-based catalysts. Interestingly, benzene was not formed as a by-product of *n* hexane reactions. Moreover, the bifunctional state shows considerable resistance to corrosion by sulphur and water.

References

- 1. F. Gault, Adv. Catal. 30 (1980) 1.
- 2. A. Wootsch, Z. Paal, J. Catal. 185 (1999) 192.
- 3. U.B. Dimirci, F. Garin, Catal. Lett. 76 (2001) 45.
- 4. A. Katrib, P. Leflaive, L. Hilaire, G. Maire, Catal. Lett. 38 (1996) 95.