Catalytic steam reforming of biodiesel as a means of renewable hydrogen production.

Gaurav Nahar^{1*}, Valerie Dupont¹, Emiliana Dvininov²

¹ Energy Resources Institute, The University of Leeds, LS2 9JT, UK ² MEL Chemicals, PO BOX 6, Lumns Lane, Swinton, Grater Manchester M27 8LS, UK **corresponding author: ganahar@gmail.com*

Introduction

Hydrogen production from fresh vegetable oils like sunflower, canola and rapeseed oils using nickel based catalyst has been reported by Marquevich et al[1]. Similarly the use of waste cooking oil and palm oil fatty acid distillates for hydrogen production were reported by Pimenidou et al and Shotipruk et al [2-4]. Hydrogen production from bio-diesel is relatively new and only very few conceptual and catalytic investigations have been reported. Hydrogen production via catalytic steam reforming of biodiesel over Ni supported ceria-zirconia catalyst was evaluated.

Materials and Methods

The Ni supported ceria zirconia catalyst was prepared using wet impregnation and dry impregnation method. A 17 wt % ceria doped zirconia |(MELCat XZO1580/01) was used as catalyst support provided by MEL Chemicals, UK. The catalytic support is a ceria stabilized tetragonal zirconia and has an average particle size of 5µm and high purity. Nickel nitrate solution was used to obtain the desired nickel loading of 10-30 wt %. The experiments were run in a fixed bed continuous-flow reactor equipped with separate vaporizers for biodiesel and water. Experiments were at molar steam to carbon (S/C) of 3, 650°C and weight hourly space velocity (WHSV) of 3.18 h⁻¹. Biodiesel and water were delivered individually using two syringe pumps and the gases were analyzed using a Varian CP 4900 micro-GC equipped with two TCD detectors using molecular sieve and polar plot columns. Surface area, pore-size and pore volume analysis of the catalyst were determined using Quantachrome NovaWin surface area and porosity analyzer. X-ray diffraction of the catalyst was performed using a Brucker **D8**.

Results and Discussion

X-ray diffraction and surface area analysis of the Ni supported on Ce-ZrO₂ catalysts at different Ni loadings is provided in **Table 1**.

 Table 1. X-ray diffraction, surface area and pore-size analysis of catalyst prepared wet impregnation method.

Ni Loading	BET (m ² /g)	Crystallite size, XRD (nm)	Pore size (nm)	Pore volume cc/g	Ni dispersion (%)
None	380 (fresh)	-	-	0.37	0
10 wt %	55.89 ^a 59.70 ^b	11.41 ^c 15.49 ^d	4.692	0.135	6.35
20 wt %	53.96ª	11.3°	4.796	0.133	

	58.37 ^b	37.28 ^d			2.71	
30 wt %	48.76 ^a 53.97 ^b	11.3 ^c 33.9 ^d	4.475	0.122	2.98	

BET surface area, b-BJH adsorption surface area-support crystallite size, and d-NiO crystallite size.

The 10 wt % Ni/Ce $_{0.12}$ Zr $_{0.88}$ O₂ was selected for biodiesel steam reforming based on its smaller NiO crystallite size and higher dispersion. The catalyst performance (Table 2) was evaluated for 2 hrs. Carbon monoxide, carbon dioxide and methane selectivities of 63.60, 56.64 and 2.10 % respectively, were found during the experiment. Small amount of alkenes and alkanes i.e. ethylene, propylene and ethane were also measured during the evaluation.

Table 2. Catalytic performance of steam reforming of biodiesel using (S/C) of 3, at 650° C and WHSV of 3.18 h⁻¹. The vaporizer temperatures for biodiesel and water were set at 190 and 170°C respectively.

	H ₂ yield (wt % of biodiesel feed)	Biodiesel conversion to C-gases	Steam conversion (%)	CO/CO ₂ ratio	Selectivity to H ₂ amongst H-gases (%)
Experimental	27.82	96.1	41.3	0.51	98.1
Equilibrium	29.75	100	47.5	0.71	98.4

Significance

Steam reforming of biodiesel over 10 wt % Ni/Ce $_{0.12}$ Zr $_{0.88}$ O₂ catalyst yielded outputs close to chemical equilibrium for the duration of the experiments of 2h.

References

[1] Marquevich, M.; Farriol, X.; Medina, F.; Montané, D. Ind. & Eng. Chem. Res. (2001), 40, 4757.

[2] Pimenidou, P.; Rickett, G.; Dupont, V.; Twigg, M.V. Bioresour Technol. (2010), 101, 6389.

[3] Pimenidou, P.; Rickett, G.; Dupont, V.; Twigg, M.V. Bioresour Technol. (2010), 101, 9279.

[4] Shotipruk, A.; Assabumrungrat, S.; Pavasant, P.; Laosiripojana, N. Chem. Eng. Sci. (2009), 64, 459.