Molten copper hexaoxodivanadate as SO₃ decomposition catalyst for solar thermochemical water splitting cycles

T.Kawada, T.Tajiri, T.Yamashita, S.Hinokuma, M.Machida
Department of Applied Chemistry and Biochemistry, Graduate School of Science and
Technology, Kumamoto University, Kumamoto, 860-8555 Japan
*corresponding author: machida@kumamoto-u.ac.jp

Introduction

Thermochemical water splitting will be a promising process for hydrogen production by utilizing concentrated solar radiation as a heat source. The cost-effective production of solar hydrogen requires multi-stage processes working at lower temperatures. We are interested in so-called "IS process" as a candidate consisting of the following step reactions. In the reaction (2), sulfuric acid dissociates nearly completely into H_2O and SO_3 in the gas phase at above 350 °C, but the subsequent decomposition of SO_3 into SO_2/O_2 requires heating at ≥ 900 °C.

Consequently, the reaction (2) is operated at the highest temperature among these three steps. The present work focused on the development of oxide catalysts that can reduce the temperature for SO₃ decomposition down to ≤650 °C.

$$SO_2 + I_2 + 2H_2O \rightarrow H_2SO_4 + 2HI$$
 (1)
 $H_2SO_4 \rightarrow H_2O + SO_2 + 1/2O_2$ (2)
 $2HI \rightarrow H_2 + I_2$ (3)

Materials and Methods

Bulk oxides (CuV_2O_6) and supported catalysts ($Cu-V/SiO_2$) were prepared as was described in our preceding paper [1,2]. Molar ratios of Cu:V:Si=1:2:20 (denoted as CuV_2/SiO_2) and/or 1:1:20 (CuV/SiO_2) were employed to deposit monophasic CuV_2O_6 and $Cu_2V_2O_7$, respectively. Catalytic reaction was carried out in a flow reactor (14% SO_3 , 18% H_2O and N_2 balance, WHSV=55.2 g- H_2SO_4 (g-cat) $^{-1}h^{-1}$).

Results and Discussion

Fig. 1 exhibits the evolution of SO_3 conversion over two types of supported catalysts versus time during stepwise change of reaction temperature. Although the activity of both catalysts increased with an increase of temperature, their time-on-stream behaviors were quite different. In contrast to stable but low conversion over CuV/SiO_2 at 650 °C (b), CuV_2/SiO_2 was found to increase the conversion with time-on-stream at 650 °C, achieving twenty times higher conversion than CuV/SiO_2 . Higher SO_3 conversions of CuV_2/SiO_2 than CuV/SiO_2 suggest a higher intrinsic activity of CuV_2O_6 compared to $Cu_2V_2O_7$. Nevertheless, it should be noted that the catalytic activity was accelerated when the reaction temperature reached the melting point of CuV_2O_6 (~630 °C). This is not the case for $Cu_2V_2O_7$, which exhibits a higher melting points (780 °C).

XRD and Raman spectroscopy suggested that Cu sulfate was formed on the catalyst surface under the reaction condition. Considering this is an intermediate species of SO₃ decomposition, its thermal behavior should be a clue to elucidate the reason for the accelerated SO₃ decomposition at the melting point. Thermal behavior of a physical mixture of CuSO₄/CuV₂O₆ was next studied by TG-DTA-MS (Fig.2). When CuSO₄ alone was heated, sulfate decomposition started at around 550 °C (a). In the MS spectra, SO₂ and O₂ were

detected, whereas SO_3 was negligible, suggesting the occurrence of a stoichiometric reaction; $CuSO_4 \rightarrow CuO + SO_2 + 1/2 \ O_2$. As shown in Fig 2b, a mixture of $CuSO_4/CuV_2O_6$ also started the decomposition at around 550 °C, but a very steep increase of SO_2 and O_2 accompanied by a rapid weight loss occurred at 630 °C, where melting of CuV_2O_6 yielded a sharp endothermic peak. The maximum rate of decomposition is more than six times higher than that of $CuSO_4$ alone. These results suggest that the decomposition of $CuSO_4$ to evolve SO_2/O_2 is significantly accelerated in contact with molten CuV_2O_6 .

From these results, a possible mechanism for the accelerated catalytic SO₃ decomposition over molten copper vanadate is discussed. On the surface of molten vanadate, SO3 adsorption to Cu oxide species vields Cu-SO₄ species, which are readily dissolved into molten vanadate consisting of tetrahedral VO₄ and Cu²⁺/Cu⁺ redox couples, which immediately convert SO₄ to SO₂/O₂. Free copper oxide species thus formed defuse back to the liquid surface, where the reaction with SO3 reforms Cu-SO4 species. In this way, the molten copper vanadate enables such fast cycles of SO3 capture and decomposition to SO₂/O₂.

Significance

This work was supported by JSPS KAKENHI Grant Number 24246130 and by Energy Carrier Project of JST ALCA.

References

[1] M.Machida, et al., Chem. Commun., 2011, 47, 9591; Chem. Mater., 2012, 24, 557; J. Phys. Chem. C, 2013, 117, 26710.

Fig. 1 Catalytic SO_3 conversion over a) CuV_2/SiO_2 and b) CuV/SiO_2 versus time-on-stream during stepwise change of reaction temperature.

Fig. 2 TG-DTA-MS profiles for a) CuSO₄ and b) CuSO₄/CuV₂O₆ mixture measured at heating rate of 20 °C min⁻¹ in a stream of He.

[2] T. Kawada, et al., Catal. Sci. Technol., in press (2014).