Effect of reduction condition of Ni/Al₂O₃ catalyst for suppression of ammonia by-production during steam reforming of nitrogen contaminated methane

<u>S. Satokawa</u>*, F. Watanabe, N. Shimoda Seikei University, Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan *corresponding author:satokawa@st.seikei.ac.jp

Introduction

Fuel cell systems are one of the most promising methods for clean and efficient energy utilization. Natural gas is a useful fuel for stationary applications of fuel cell systems. Steam reforming of natural gas is a popular chemical process on hydrogen production for residential polymer electrolyte fuel cell systems. In some cases, natural gas contains nitrogen as a popular contaminant and the assumed maximum nitrogen concentration is 20%. When such natural gas is fed to PEFC systems, it has a fear of ammonia (NH $_3$) formation over steam reforming catalyst. Because it is reported that the NH $_3$ contamination in the reformed gas causes the deterioration of preferential CO oxidation catalyst and the electrode catalyst [1, 2]. Supported Ni and Ru catalysts are commonly used as a natural gas steam reforming catalyst in industry [3]. It is well known that the CH $_4$ steam reforming activity of Ru catalyst is higher than that of Ni catalyst. However, NH $_3$ synthesis activity of Ru catalyst is also higher than that of Ni catalyst [4].

In this study, the effect of reduction condition of Ni catalyst for the CH_4 steam reforming activity and the NH_3 formation activity over alumina supported Ni catalyst was investigated.

Materials and Methods

The support material $(\alpha - Al_2O_3)$ was obtained by the calcination of boehmite (Catapal B alumina, Sasol) at 1300°C for 2 h in air. The Ni/Al₂O₃ catalyst was prepared by a conventional impregnation method using aqueous solution of a Ni(NO₃)₂·6H₂O. The obtained solid sample was calcined at 500°C for 2 h in air. The Ni content was adjusted to 12wt% after reduction treatment. The catalytic activity test was carried out in a fixed bed flow reactor. The calcined sample was reduced in 10% H₂/N₂ gas stream at 500°C, 600°C or 700°C for 30 min prior to the activity test. A reaction gas composed of 20% N₂ and 80% CH₄ was fed in the reaction tube and the gas flow rate was 50 mL min⁻¹. Steam was fed in the reaction tube separately and steam carbon (S/C) ratio was adjusted to 2.5. Catalyst weight for methane steam reforming activity test was 0.05 g (GHSV = 60,000 h⁻¹) and it for NH₃ formation activity test was 1.0 g (GHSV = 3,000 h⁻¹). The produced gas components (H₂, N₂, CH₄, CO, and CO₂) were analyzed by using a gas chromatograph (Shimadzu, GC-14B). The concentration of NH₃ was analyzed by ion chromatography method. The outlet gas was introduced in H₃BO₃ aqueous solution (5 g L⁻¹) for 18 h and the obtained solution was analyzed by an ion chromatograph (Shimadzu, HIC-6A).

Results and Discussion

Figure 1a shows the CH_4 conversion over Ni/Al_2O_3 catalysts pretreated at different reduction temperatures. A dotted line indicates a chemical equilibrium curve for CH_4

conversion at S/C=2.5. The CH_4 conversion of each catalyst was low enough from equilibrium curve from $500^{\circ}C$ to $700^{\circ}C$ and has a nearly same value at each reaction temperature. It means that the CH_4 steam reforming rate of Ni/Al_2O_3 catalyst was almost same in spite of different reduction temperatures. The apparent CH_4 steam reforming rate was about 2.5 mmol s^{-1} g-metal $^{-1}$ at $700^{\circ}C$ in all catalysts. **Figure 1b** shows the NH_3 concentration in the outlet gas reacted over Ni/Al_2O_3 catalysts pretreated at different reduction temperatures. The NH_3 concentration increased with the increase of reaction temperature and the NH_3 concentrations obtained over $12\text{wt}\%Ni/Al_2O_3$ catalysts reduced at $500^{\circ}C$, $600^{\circ}C$ and $700^{\circ}C$ were 20.8 ppm, 13.4 ppm and 8.9 ppm, respectively. Therefore, the NH_3 formation rate was suppressed by the increase of reduction temperature of Ni/Al_2O_3 catalyst. It is suggested that the degree of reduction of Ni metal controls the apparent NH_3 formation rate over Ni/Al_2O_3 catalyst.

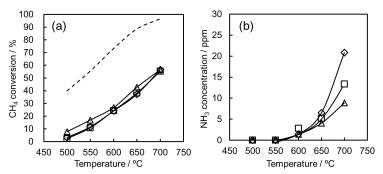


Figure 1. Experimental results of (a) the methane conversion (GHSV = $60,000 \text{ h}^{-1}$) and (b) the ammonia concentration (GHSV = $3,000 \text{ h}^{-1}$) over $12\text{wt}\%\text{Ni}/\alpha\text{-Al}_2\text{O}_3$ catalysts after reduced at 500°C (\triangle), 600°C (\square) and 700°C (\diamondsuit). A dotted line indicates chemical equilibrium curve for methane conversion at S/C = 2.5.

Significance

High temperature reduction of catalyst is effective to suppress NH $_3$ by-production during steam reforming of nitrogen contaminated methane over Ni/Al $_2$ O $_3$ catalyst.

References

- Wakita, H.: Ukai, K.: Takeguchi, T.: Ueda, W. J. Phys. Chem. C 2007, 111, 2205.
- Uribe, F. A.; Gottesfeld, S.; Zawodzinski Jr., T. A. J. Electrochem. Soc. 2002, 149, A203
- 3. Rostrup-Nielsen, J. R. in Handbook of Heterogeneous Catalysis vol. 6; Wiley-VCH, Weinheim, 2008.
- Schlögl, R. in Handbook of Heterogeneous Catalysis vol. 5; Wiley-VCH, Weinheim, 2008