Experimental microkinetic approach of NH$_3$-SCR process: determination of individual heat of adsorption of NH$_3$ adsorbed species on TiO$_2$.

François Giraud1, Chistophe Geantet1, Nolven Guilhaume1, Sèbastien Gros2, Lynda Forcheron3, Mohamed Kanniche2 and Daniel Bianchi2.

1Institut de recherche sur la catalyse et l’environnement de Lyon (IRCELYON), UMR 5256 CNRS, Université Claude Bernard Lyon 1, Bat. Chevreul, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne-France.

2EDF- Fluid Dynamics, Power Generation and Environment Department, 6 Quai Wattier, 78401, Chatou-France.

*corresponding author: francois.giraud@ircelyon.univ-lyon1.fr

Introduction
This work is dedicated to the understanding of the mechanism of the Selective Catalytic Reduction (SCR by NH$_3$) of NO$_x$ contained in the exhaust gases of coal-fired power plants [1], on V$_2$O$_5$-WO$_3$/TiO$_2$ catalysts (NH$_3$-SCR) using an experimental microkinetic approach. One of the key steps in the mechanism is the adsorption of NH$_3$ [2] on the catalyst. The aim of the present study is the development of experimental procedures allowing the measurement of individual heats of adsorption of NH$_3$ species adsorbed on the catalyst surface in the conditions of the NH$_3$-SCR process.

This has been realized by adapting a method, denoted AEIR (Adsorption Equilibrium Infrared Spectroscopy) described previously for the characterization of adsorption of CO on different metal-supported catalysts [3] and using TiO$_2$ P25 from Degussa as solid representative of the support of NH$_3$-SCR catalysts.

Materials and Methods
The AEIR method consists in following the evolution of the IR bands of adsorbed species in isobaric condition during heating/cooling cycles. This provides the area evolutions of the IR bands characteristic of each adsorbed species as a function of the adsorption temperature T_a. These data give the evolutions of the experimental coverage $\theta(T_a)$ of each adsorbed species X in isobaric conditions. The comparison of the $\theta(T_a)$ curve to that obtained from a theoretical model (Langmuir, Temkin) provides the values of the heats of adsorption of each adsorbed species as a function of surface coverage. Which are key thermodynamic parameters in the modeling of heterogeneous catalytic processes.

The development of the procedure was made using (a) a home made IR cell in transmission mode and (b) a TiO$_2$ pellet treated in situ under O$_2$ at 440$^\circ$C during 20 min. After cooling to 300 K, the adsorption of ammonia is performed using a gas flow rate of 0.1%NH$_3$/He. After the adsorption equilibrium, the adsorption temperature was increased progressively while registering IR spectra of adsorbed species periodically with a FTIR spectrometer (Nicolet 6700).

Results. Figure 1 shows the evolution of experimental coverage of the two adsorbed species on the Lewis-acid sites of TiO$_2$ P25; noted NH$_{3ads-L1}$ and NH$_{3ads-L2}$ using their characteristic IR bands (a) δ_L at 1149 cm$^{-1}$ (symbols *) and 1228 cm$^{-1}$ (symbols ▲) respectively and (b) δ_p at 1596 cm$^{-1}$ with is a common IR band (symbols ●). The heats of adsorption at high and low coverage were deduced for each species by fitting the theoretical curves of Temkin model (continuous lines) to the experimental points: 56 and 105 kJ/mol for NH$_{3ads-L1}$; 105 and 160 kJ/mol for NH$_{3ads-L2}$. The δ_p IR band allows measuring the proportion of the two species on TiO$_2$ surface at 303K: $x_p=0.73$ and $x_L=0.27$.

![Figure 1. Evolution of the coverage of the NH$_3$ adsorbed species on TiO$_2$ P25 (P$_{arb}$= 1mbar).](image)

Significance
This study allowed identifying two NH$_3$ species adsorbed on Lewis sites of TiO$_2$ P25. The individual heats of adsorption of these species and their relative proportions on TiO$_2$ surface at SCR temperature condition were determined. Forthcoming articles show that the present method can be applied to model and industrial NH$_3$-SCR catalysts.

References