Non-thermal plasma-assisted low temperature NSR process on a LaMn_{0.9}Fe_{0.1}O₃ perovskite catalyst

Zhao-shun Zhang, Li Xu, Chuan Shi*
Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian, China,
*corresponding author: chuanshi@dlut.edu.cn

Introduction
Pt/BaO/Al₂O₃ (PBA) catalyst is the most commonly studied model composition for NO_x storage-reduction catalysis, it exhibits good catalytic performance at temperatures higher than 300 °C due to the strong surface basicity of BaO, which imparts relatively high thermal stability to the nitrate [1]. However, the low temperature activity of lean NO_x trap (LNT) catalysts is especially important for light duty diesel applications [2]. Due to their high NO_x storage capacity at low temperatures, perovskites have attracted considerable attention, however, they are limited by their regeneration activities during rich phase. As enlightened by the properties of non-thermal plasma (NTP) [3], we try to employ NTP in rich phase to regenerate the catalyst. Due to the activation of reductants by NTP, the regeneration of the LNT catalyst at lower temperatures (< 300 °C) was expected to occur with combination of plasma and catalysis.

Experimental
Pt/30BaO/Al₂O₃ and LaMn_{0.9}Fe_{0.1}O₃ perovskite samples were prepared by incipient wetness impregnation and the combustion synthesis method, respectively. The NO_x storage-reduction behavior of LaMn_{0.9}Fe_{0.1}O₃ perovskite was investigated in this study (lean phase: 500 ppm NO, 8% O₂, balance Ar, duration: 10 min; rich phase: 1% H₂; balance Ar, discharge power: 20 w, duration: 2 min). In addition, the microstructure of the LaMn_{0.9}Fe_{0.1}O₃ catalyst was characterized by XRD, XPS and H₂-TPR techniques.

Results and Discussion
The NSC measurements were performed for LaMn_{0.9}Fe_{0.1}O₃ at 30 - 400°C, and the results compared with a traditional LNT catalyst of the Pt/BaO/Al₂O₃ type. As shown in Table 1, it is clear that LaMn_{0.9}Fe_{0.1}O₃ has much higher NO_x storage capacity at low temperatures (< 300°C) compared with those of the PBA catalyst.

Table 1. NO_x storage capacities (NSCs) measured under lean conditions (500 ppm NO, 8% O₂, N₂ balance, 50 min storage time, GHSV= 30,000 h⁻¹.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO<sub>x</sub> storage capacity (μmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 °C</td>
</tr>
<tr>
<td>Pt/30BaO/Al<sub>2</sub>O<sub>3</sub></td>
<td>86.9</td>
</tr>
<tr>
<td>LaMn<sub>0.9</sub>Fe<sub>0.1</sub>O<sub>3</sub></td>
<td>380.5</td>
</tr>
</tbody>
</table>

NO_x storage and reduction were investigated under cycling conditions over LaMn_{0.9}Fe_{0.1}O₃, as well as over Pt/30BaO/Al₂O₃ for comparison, results are shown in Fig. 1a. Compared with PBA, LaMn_{0.9}Fe_{0.1}O₃ sample displays much lower NO_x removal efficiency at all temperatures. The highest NO_x removal efficiency was observed at 300°C, but was only half that obtained over PBA at the same temperature.

As indicated in Fig. 1b, the NO_x removal efficiency of LaMn_{0.9}Fe_{0.1}O₃ over the temperature range 30-400°C was greatly enhanced compared with the performance obtained in the absence of the H₂-plasma in the rich phase (Fig. 1a). Indeed, cycle-averaged NO_x conversions were higher than 80% in the temperature range 30°C - 300°C. This indicates that the stored NO_x on LaMn_{0.9}Fe_{0.1}O₃ could be reduced by the H₂-plasma, and that the catalyst was effectively regenerated during rich phase operation.

Figure 1. NO_x conversion during lean/rich cycling at different temperatures (catalysis only) (a); NO_x conversion during lean/rich cycling at different temperatures (rich phase discharge power: 20 w, duration: 2 min) (plasma enhanced catalysis) (b).

Conclusions
Characterization by XRD, XPS and H₂-TPR techniques indicated that doping Fe into LaMnO₃ causes weakening of the Mn-O bond, which results in the generation of relatively more active surface oxygen species in LaMn_{0.9}Fe_{0.1}O₃ compared to LaMnO₃. This, leads to better NO_x storage capacity compared with LaMnO₃. However, due to the difficulty in regeneration during the rich phase, the perovskite showed much lower activity during lean-rich cycling compared with a traditional LNT catalyst of the Pt/BaO/Al₂O₃ type. By employing an H₂-plasma in the rich phase to regenerate the NO_x saturated LaMn_{0.9}Fe_{0.1}O₃, NO_x conversion was greatly improved, especially in the low temperature region. Indeed, NO_x conversions were greater than 80% in the temperature range 30 - 300°C. These results indicate that the use of an H₂-plasma in the rich phase is an effective way to regenerate the perovskite catalyst, this being the rate limiting step [4]. Hence, by combining the high NO_x storage capacity of the perovskite with non-thermal plasma assisted activation of H₂, high NO_x conversions were achieved over the LaMn_{0.9}Fe_{0.1}O₃ catalyst over a broad temperature range.

References